
Problem

Why automatic information extraction  
for forms?

• Automatic information extraction (IE) from document or form images 
eliminates error-prone manual data entry so users don’t have to do it.

• Existing machine learning-based techniques for IE rely on expensive-to-
acquire manually annotated labeled data.

• Intuit solves this problem by building a data-driven synthetic data 
generation pipeline and by using a modified conditional random field (CRF) 
model for field extraction. 

Form automatic information extraction as a 
named entity recognition (NER) problem

• Two main types of entities: form field titles and form field values.

• W2 form contains 32-35 fields, corresponding to ~70 entity classes.
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The Pipeline Stages

• The generators learn to generate three main types of data 
distributions from millions of anonymized real electronic form field 
data. 

• The synthetic data is rendered on variations of form with  
font variations. 

• The entire pipeline is packaged into a single ready-to-deploy docker 
image.

Model Performance:  
• Model performance varies with the usage rate of field class in W2 Form.

• The best model yield 97.44% F1 score on classes that are highly used field  
value class. 

Next Steps:  
• Deployment of the best NER-CRF.

• Exploring over-sampling to improve performance on classes that are not  
highly used.

• Exploring more powerful model: bidirectional Long Short Term Memory 
Conditional Random Field (biLSTM-CRF) using biLSTM as a feature extractor.

Model Training

• 96K images, 48 variations, ~20 font variations and text localization 

• 80/10/10 training/validation/test split

• L-BFGS with L2 regularization

Best NER-CRF Model Performance
(aggregated across all classes)

Metric Field Title 
classes

Field value 
classes

High Usage*
Field Value
classes

Precision 99.10% 81.60% 97.74%

Recall 98.50% 82.40% 96.65%

F1 98.50% 82.40% 97.65%

* High usage classes: classes that appear in more than 70% of all real W2 form data.

NER-CRF Model Confidence Among Highly Used Classes

Field Class (entity we want 
to extract)

Model
Confidence

Usage Rate

Employee Name 99.19% 99.86%

Employee Address 92.31% 99.82%

Employer Id Number (EIN) 97.70% 99.85%

Medicare Tax Withheld Amount 98.18% 98.39%

Medicare Wages And Tips Amount 99.24%  98.62%

Social Security Number (SSN) 98.64%  99.86%

Social Security Tax Amount 98.23%  97.23%

Social Security Wages Amount 97.86%  97.44%

Employer State Id Number (State EIN) 95.93% 87.34%

State Income Amount 93.48%  87.33%

Wages Amount 98.25%  99.77%

Withholding Amount 97.12%  98.42%


