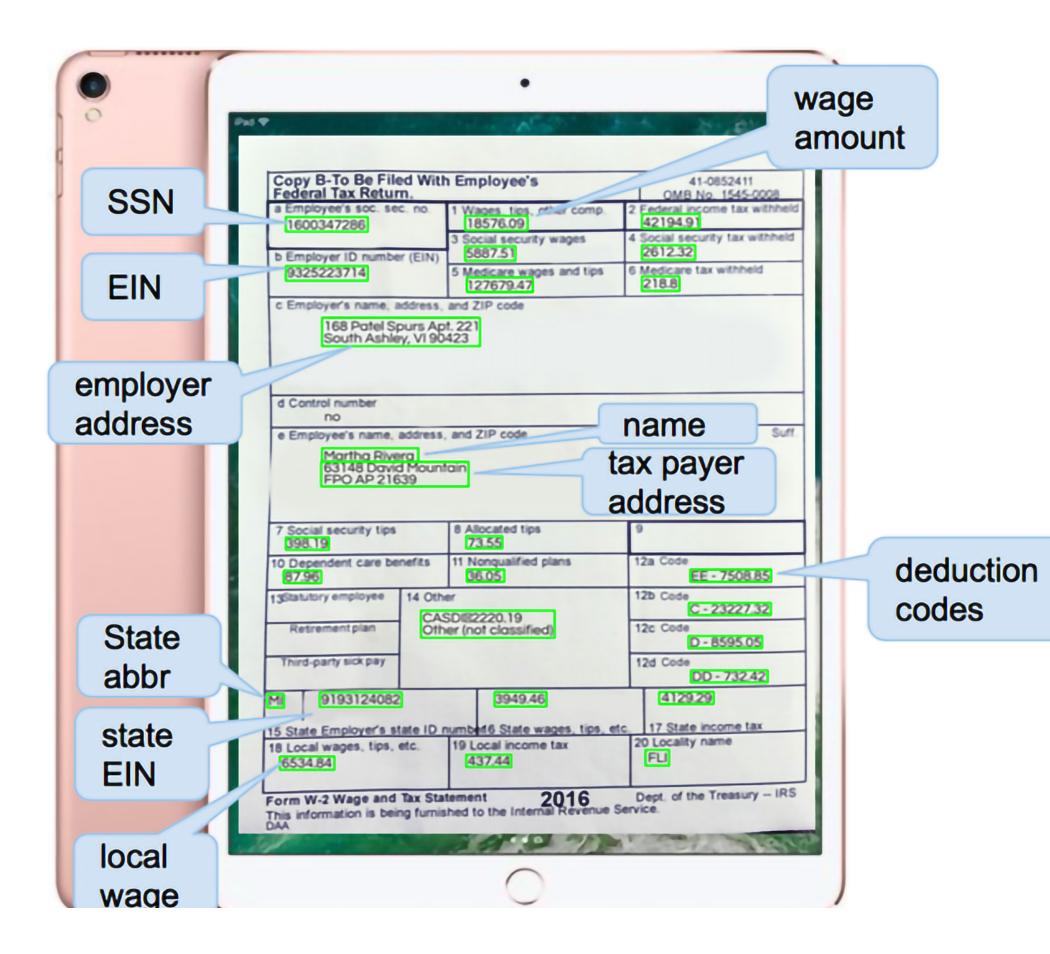
Learning Information Extraction from Images of Structured Documents Using Synthetic Data and Conditional Random Fields (CRFs)

Tharathorn (Joy) Rimchala Intuit

Problem

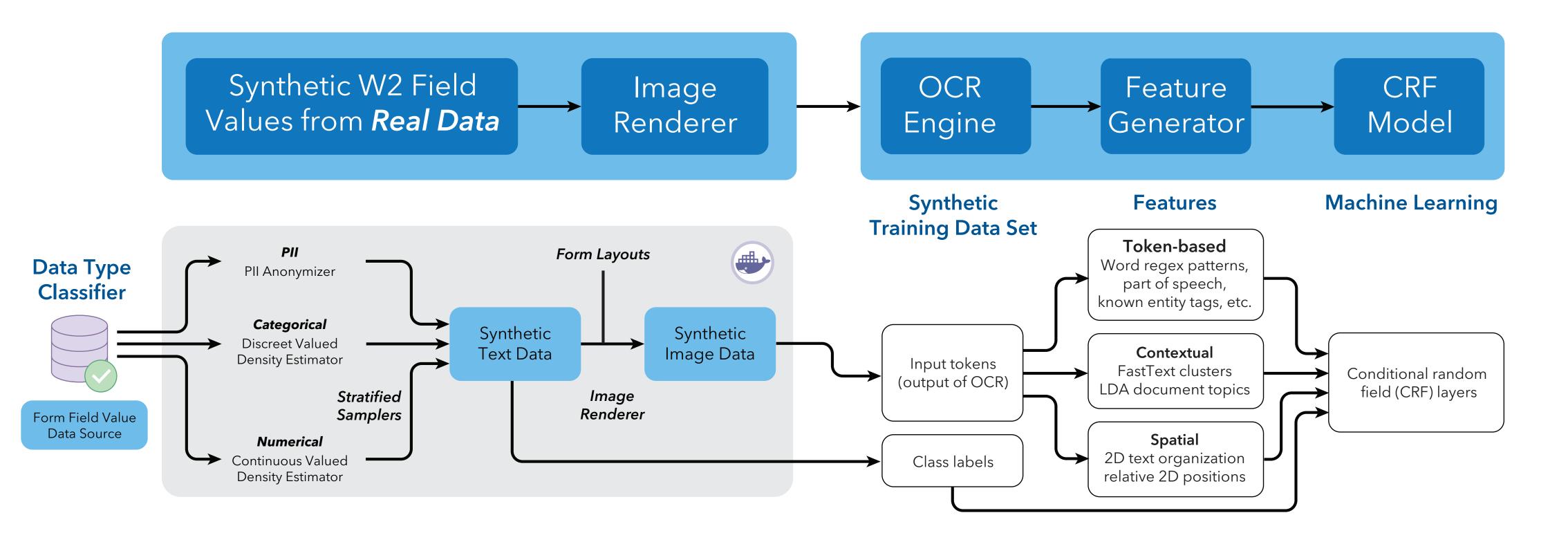
Why automatic information extraction for forms?



Solution: An End-to-End Learning Framework for Form Information Extraction

Synthetic Data Generation

Form CRF Model Training



- Automatic information extraction (IE) from document or form images eliminates error-prone manual data entry so users don't have to do it.
- Existing machine learning-based techniques for IE rely on **expensive-toacquire** manually annotated labeled data.
- Intuit solves this problem by building a data-driven synthetic data generation pipeline and by using a modified conditional random field (CRF) model for field extraction.

Form automatic information extraction as a named entity recognition (NER) problem

The Pipeline Stages

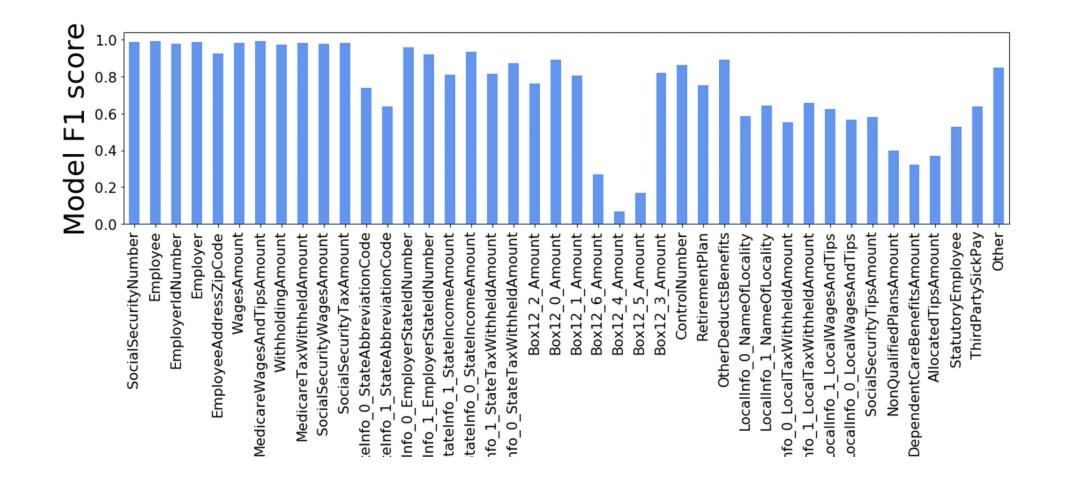
- The generators learn to generate three main types of data distributions from millions of anonymized real electronic form field data.
- The synthetic data is rendered on variations of form with font variations.
- The entire pipeline is packaged into a single **ready-to-deploy** docker image.

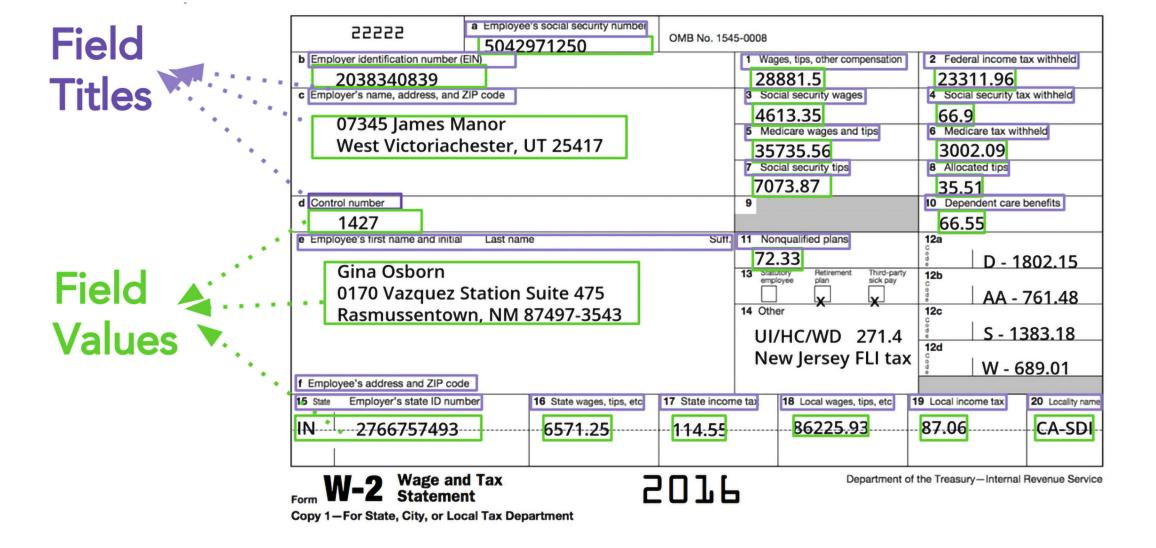
Model Training

- 96K images, 48 variations, ~20 font variations and text localization
- 80/10/10 training/validation/test split
- L-BFGS with L2 regularization

Results

Best NER-CRF Model Performance (aggregated across all classes)





- Two main types of entities: form field titles and form field values.
- W2 form contains 32-35 fields, corresponding to ~70 entity classes.

Metric	Field Title classes	Field value classes	High Usage* Field Value classes
Precision	99.10%	81.60%	97.74%
Recall	98.50%	82.40%	96.65%
F1	98.50%	82.40%	97.65%

* High usage classes: classes that appear in more than 70% of all real W2 form data.

NER-CRF Model Confidence Among Highly Used Classes

Field Class (entity we want to extract)	Model Confidence	Usage Rate
Employee Name	99.19%	99.86%
Employee Address	92.31%	99.82%
Employer Id Number (EIN)	97.70%	99.85%
Medicare Tax Withheld Amount	98.18%	98.39%
Medicare Wages And Tips Amount	99.24%	98.62%
Social Security Number (SSN)	98.64%	99.86%
Social Security Tax Amount	98.23%	97.23%
Social Security Wages Amount	97.86%	97.44%
Employer State Id Number (State EIN)	95.93%	87.34%
State Income Amount	93.48%	87.33%
Wages Amount	98.25%	99.77%
Withholding Amount	97.12%	98.42%

Model Performance:

- Model performance varies with the usage rate of field class in W2 Form.
- The best model yield **97.44% F1** score on classes that are **highly used field value class.**

Next Steps:

- Deployment of the best NER-CRF.
- Exploring over-sampling to improve performance on classes that are not highly used.
- Exploring more powerful model: bidirectional Long Short Term Memory Conditional Random Field (biLSTM-CRF) using biLSTM as a feature extractor.

